Top Fuel

Top Fuel racing is a class of drag racing in which the cars are run on a mix of approximately 90% nitromethane and 10% methanol (also known as racing alcohol) rather than gasoline or simply methanol. The cars are purpose-built for drag racing, with an exaggerated layout that in some ways resembles open-wheel circuit racing vehicles. However, top fuel dragsters are much longer, much narrower, and are equipped with large tires in back and small tires in front, all in order to maximize their straight-line acceleration and speed.

Top fuel dragsters are the fastest category of drag racers, with the fastest competitors reaching speeds of 531 km/h (330 mi/h) and finishing 402 m (quarter mile) runs in less than 4.5 seconds and 305 m (1,000 ft) races in under 3.8 seconds. The raw speed and power of these cars is such that, at some events, races are run over 305 m (1,000 ft) distances rather than the traditional 402 m (1320 ft / quarter mile), particularly when races are held at locations with insufficient room for cars to slow down after having completed the race.

This practice was instituted by the National Hot Rod Association (NHRA) following the fatal crash of driver Scott Kalitta. Kalitta was killed in an accident while qualifying for an NHRA event held at Old Bridge Township Raceway Park in Englishtown, NJ, in June 2008. Other sanctioning bodies still commonly use the longer 402 m (1320 ft) distance, although the FIA has, on occasion, used the shorter distance when venues have lacked sufficient "shutdown area."

A top fuel dragster accelerates from a standstill to 160 km/h (100 mi/h) in as little as 0.7 seconds (less than one fifth the time required by a production Porsche 911 Turbo to reach 96.5 km/h or 60 mi/h) and can exceed 450 km/h (280 mph) in just 201 m (660 ft). This acceleration subjects the driver to an average force of about 4.0 G over the duration of the race.

Contents

Facts about Top Fuel

Before their run, racers often perform a burnout in order to clean and heat tires. Additionally, the burnout applies a layer of fresh rubber to the track surface, which greatly improves traction during launch. A burnout may cover up to one quarter of the track's distance.

At maximum throttle and RPM, the exhaust gases escaping from a dragster's open headers produce about 800–1000 pounds (3.6 kilonewtons) of downforce. The massive foil over and behind the rear wheels produces much more, peaking at around 12,000 lbf (53 kN) when the car reaches a speed of about 324 mph (521 km/h).

The engine of a Top Fuel dragster generates around 150 dB[1] of sound at full throttle, enough to cause physical pain or even permanent damage. A sound that intense is not just heard, but also felt as pounding vibrations all over one's body, leading many to compare the experience of watching a Top Fuel dragster make a pass to 'feeling as though the entire drag strip is being bombed'. Prior to a run, race announcers usually advise spectators to cover or plug their ears. Ear plugs and even earmuffs are often handed out to fans at the entrance of a Top Fuel event.

Dragsters are limited to a maximum length of 300 inches.

The fuel

NHRA regulations limit the composition of the fuel to a maximum of 90% nitromethane (as of 2008); the remainder is largely methanol. However, this mixture is not mandatory, and less nitromethane may be used if desired.

Kenny Bernstein was the first drag racer in NHRA history to break 300 mph (480 km/h) in such a class of car on the 1/4 mile in March, 1992.[2]

While nitromethane has a much lower energy density (11.2 MJ/kg) than either gasoline (44 MJ/kg) or methanol (22.7 MJ/kg), an engine burning nitromethane can produce up to 2.3 times more power than an engine burning gasoline. This is made possible by the fact that, in addition to fuel, an engine must admit air in order to generate force: 14.7 kg of air is required to burn one kilogram of gasoline, compared to only 1.7 kg of air for one kilogram of nitromethane. This means that an engine can burn 8.7 times more nitromethane than gasoline.

Nitromethane also has a high temperature of vaporization, meaning that it will absorb substantial engine heat as it vaporizes, providing an invaluable cooling mechanism. The laminar flame speed and combustion temperature are higher than gasoline at 0.5 m/s and 2400 °C respectively. Power output can be increased by using very rich air fuel mixtures. This is also something that helps prevent pre-ignition, something that is usually a problem when using nitromethane.

Due to the relatively slow burn rate of nitromethane, very rich fuel mixtures are often not fully ignited and some remaining nitromethane can escape from the exhaust pipe and ignite on contact with atmospheric oxygen, burning with a characteristic yellow flame. Additionally, after sufficient fuel has been combusted to consume all available oxygen, nitromethane can combust in the absence of atmospheric oxygen, producing hydrogen, which can often be seen burning from the exhaust pipes at night as a bright white flame. In a typical run the engine can consume as much as 103 litres (22.75 gallons) of fuel during warmup, burnout, staging, and the quarter-mile run.

Top fuel engines

Rules

Like many other motor sport formulas originating in the United States, NHRA-sanctioned drag racing favors heavy restrictions on engine configuration, sometimes to the detriment of technological development. In some regards, teams are forced to use technologies that may be decades old, resulting in cars that may seem substantially less advanced than the average family car. However, while some basic facets of engine configuration are heavily restricted, other technologies, such as fuel injection, clutch operation, ignition, and car materials and design, are under constant development.

NHRA competition rules limit the engine displacement to 500 cubic inch (8194 cc). A 4.1875 in. (106.4 mm) bore with a 4.5 in. (114.3 mm) stroke are customary dimensions. Larger bores have been shown to weaken the cylinder block. Compression ratio is about 6.5:1, as is common on engines with overdriven superchargers (that is, the supercharger is driven faster than the crankshaft).

Engine

The engine used to power a Top Fuel drag racing car has its roots in the second generation Chrysler Hemi 426 "Elephant Engine" made 1964-71. Although the Top Fuel engine is built exclusively of specialist parts, it retains the basic configuration with two valves per cylinder activated by pushrods from a centrally-placed camshaft. The engine has hemispherical combustion chambers, a 90 degree V angle; 4.8 in. bore pitch and a .54 in. cam lift. The configuration is identical to the overhead valve, single camshaft-in-block "Hemi" V-8 engine which became available for sale to the public in selected Chrysler Corporation (Chrysler brand) automotive products in 1950 (model year 1951).

The block is machined from a piece of forged aluminium. It has press-fitted, ductile iron liners. There are no water passages in the block, which adds considerable strength and stiffness. The engine is cooled by the incoming air/fuel mixture. Like the original Hemi, the racing cylinder block has a long skirt (to reduce piston "rocking" at the lower limit of piston travel). There are five main bearing caps, which are fastened with aircraft-standard-rated steel studs, with additional reinforcing main studs and side bolts. There are three approved suppliers of these custom blocks.

The cylinder heads are machined from aluminum billets. As such, they, too, lack water jackets and rely entirely on the incoming air/fuel mixture for their cooling. The original Chrysler design of two large valves per cylinder is used. The intake valve is made from solid titanium and the exhaust from solid Nimonic 80A or similar. Seats are of ductile iron. Beryllium-copper has been tried but its use is limited due to cost. Valve sizes are around 2.45 in. (62.2 mm) for the intake and 1.925 in. (48.9 mm) for the exhaust. In the ports there are integral tubes for the push rods. The heads are sealed to the block by copper gaskets and stainless steel o-rings. Securing the heads to the block is done with aircraft-rated steel studs.

The camshaft is billet steel, made from 8620 carbon steel or similar. It runs in five oil pressure lubricated bearing shells and is driven by gears in the front of the engine. Mechanical roller lifters ride atop the cam lobes and drive the steel push rods up into the steel rockers that actuate the valves. The rockers are of roller type on the intake side, but high exhaust pressure limits their use to the intake side only. The steel roller rotates on a steel roller bearing and the steel rocker arms rotate on a pair of titanium shafts within bronze bushings. Intake rockers are billet while the exhausts are investment cast. The dual valve springs are of coaxial type and made out of titanium. Valve retainers are also made of titanium, as are the rocker covers.

Billet steel crankshafts are used; they all have a cross plane a.k.a. 90 degree configuration and run in five conventional bearing shells. 180 degree crankshafts have been tried and they can offer increased power, even though the exhaust is of open type. A 180 degree crankshaft is also about 10 kg lighter than 90 degree crankshaft, but they create a lot of vibration. Such is the strength of a top fuel crankshaft that in one incident, the entire engine block was split open and blown off the car during an engine failure, and the crank, with all eight connecting rods and pistons, was left still bolted to the clutch.

Pistons are made of forged aluminium. They have three rings and aluminium buttons retain the 1.156 x 3.300 in. steel pin. The piston is anodized and Teflon coated to prevent galling during high temperature operation. The top ring is an L-shaped Dykes ring that provides a good seal during combustion but a second ring must be used to prevent oil from entering the combustion chamber during intake strokes as the Dykes-style ring offers less than optimal combustion gas sealing. The third ring is an oil scraper ring whose function is helped by the second ring. The connecting rods are of forged aluminium and do provide some shock damping, which is why aluminum is used in place of titanium, because titanium connecting rods transmit too much of the combustion impulse to the big-end rod bearings, endangering the bearings and thus the crankshaft and block. Each con rod has two bolts, shell bearings for the big end while the pin runs directly in the rod.

Superchargers

The supercharger is a 14-71 type Roots blower. It has twisted lobes and is driven by a toothed belt. The supercharger is slightly offset to the rear to provide an even distribution of air. Absolute manifold pressure is usually 3.8-4.5 bar (56-66 PSI), but up to 5.0 bar (74 PSI) is possible. The manifold is fitted with a 200 psi burst plate. Air is fed to the compressor from throttle butterflies with a maximum area of 65 sq. in. At maximum pressure, it takes approximately 900 horsepower (670 kW) to drive the supercharger.

These superchargers are in fact derivatives of General Motors scavenging-air blowers for their two-cycle diesel engines, which were adapted for automotive use in the early days of the sport. The model name of these superchargers delineates their size – the once commonly used 6-71 and 4-71 blowers were designed for General Motors diesels having six cylinders of 71 cubic inches each, and four cylinders of 71 cubic inches each, respectively. Thus, the currently used 14-71 design can be seen to be a huge increase in power delivery over the early designs.

Mandatory safety rules require a secured Kevlar-style blanket over the supercharger assembly as "blower explosions" are not uncommon. The absence of a protective blanket exposes the driver, team and spectators to shrapnel in the event that nearly any irregularity in the induction of the air/fuel mixture, the conversion of combustion into rotating crankshaft movements, or in the exhausting of spent gasses is encountered.

Oil and fuel systems

The oil system has a wet sump which contains 16 quarts of SAE 70 mineral or synthetic racing oil. The pan is made of titanium or aluminium. Titanium can be used to prevent oil spills in the event of a blown rod. Oil pressure is somewhere around 160–170 PSI during the run, 200 PSI at start up, but actual figures differ between teams.

Fuel is injected by a constant flow injection system. There is an engine driven mechanical fuel pump and about 42 fuel nozzles. The pump can flow 100 gallons per minute at 8000 rpm and 500 PSI fuel pressure. In general 10 injectors are placed in the injector hat above the supercharger, 16 in the intake manifold and two per cylinder in the cylinder head. Usually a race is started with a leaner mixture, then as the clutch begins to tighten as the engine speed builds, the air/fuel mixture is enriched. As the increased engine speed builds up pump pressure, the mixture is made leaner to maintain a predetermined ratio that is based on many factors, one of which is primary one of race track surface friction. The stoichiometry of both methanol and nitromethane is considerably greater than that of racing gasoline, as they have oxygen atoms attached to their carbon chains and gasoline does not. This means that a "fueler" engine will provide power over a very broad range from very lean to very rich mixtures. Thus, to attain maximum performance, before each race, by varying the level of fuel supplied to the engine, the mechanical crew may select power outputs barely below the limits of tire traction. Power outputs which create tire slippage will "smoke the tires" and the race is often lost.

Ignition and timing

The air/fuel mixture is ignited by two 14 mm spark plugs per cylinder. These plugs are fired by two 44-ampere magnetos. Normal ignition timing is 58-65 degrees BTDC. (This is dramatically greater spark advance than in a petrol engine as "nitro" and alcohol burn far slower.) Directly after launch the timing is typically decreased by about 25 degrees for a short time as this gives the tires time to reach their correct shape. The ignition system limits the engine speed to 8400 rpm. The ignition system provides initial 50,000 volts and 1.2 amperes. The long duration spark (up to 26 degrees) provides energy of 950 millijoules. The plugs are placed in such a way that they are cooled by the incoming charge. The ignition system is not allowed to respond to real time information (no computer-based spark lead adjustments), so instead a timer-based retard system is used.

Exhaust

The engine is fitted with eight individual open exhaust pipes, 2.75" in diameter and 18" long. These are made of steel and fitted with thermocouples for measuring of the exhaust temperature. They are called "zoomies" and exhaust gases are directed upward and backwards. Exhaust temperature is about 500°F (260°C) at idle and 1796°F (980°C) by the end of a run. During a nighttime event, the slow-burning nitromethane can extend flames many feet out from the exhaust pipes.

The engine is warmed up for about 80 seconds. After the warm up the valve covers are taken off, oil is changed and the car is refueled. The run including tire warming is about 100 seconds which results in a "lap" of about three minutes. After each lap, the entire engine is disassembled and examined, and worn or damaged components are replaced.

Performance

Measuring the power output of a top fuel engine directly is not always feasible. Certain models use a torque sensor incorporated as part of the RacePak data system. Dynamometers that can measure the output of a Top Fuel engine exist; however, the main limitation is that a Top Fuel engine cannot be run at its maximum power output for more than 10 seconds without overheating or possibly destroying itself explosively. The engine power output can also be calculated based upon the car's weight and its performance. The calculated Power output of these engines is most likely somewhere between 8500 and 10,000 horsepower (approximately 4500-6000 kilowatts), with a torque output of approximately 6000 lbf·ft (8135 N·m) and a brake mean effective pressure of 80–100 bar (8.0-10 MPa).

For the purposes of comparison, a 2010 Bugatti Veyron Super Sport, the world's most powerful production automobile at the time, produces 1,184 bhp (883 kW) of power and 1106 lbf·ft (1500 N·m) of torque.

Engine weight

Mandatory safety equipment

Much of organized drag-racing is sanctioned by the National Hot Rod Association. Since 1955, the Association has held regional and national events (typically organized as single elimination tournaments, with the winner of each two car race advancing) and has set rules for safety, with the more powerful cars requiring ever more safety equipment.

Typical safety equipment for contemporary top fuel dragsters: full face helmets with fitted HANS devices; multi-point, quick release safety restraint harness; full body fire suit made of Nomex or similar material, complete with face mask, gloves, socks, shoes, and outer sock-like boots, all made of fire-resistant materials; on board fire extinguishers; kevlar or other synthetic "bullet-proof" blankets around the superchargers and clutch assemblies to contain broken parts in the event of failure or explosion; damage resistant fuel tank, lines, and fittings; externally accessible fuel and ignition shut-offs (built to be accessible to rescue staff); braking parachutes; and a host of other equipment, all built to the very highest standards of manufacturing. Any breakthrough or invention that is likely to contribute to driver, staff, and spectator safety is likely to be adopted as a mandated rule for competition. The 54-year history of NHRA has provided hundreds of examples of safety upgrades.

In 2000, the NHRA mandated the maximum concentration of nitromethane in a car's fuel be no more than 90%. In the wake of a Gateway International Raceway fatality in 2004, involving racer Darrell Russell, the fuel ratio was reduced to 85%. Complaints from teams in regards to cost, however, has resulted in the rule being rescinded starting in 2008, when the fuel mixture returns to 90%, as NHRA team owners, crew chiefs, and suppliers complained about mechanical failures that can result in oildowns or more severe crashes caused by the reduced nitromethane mixture.[3]

The NHRA also mandated that different rear tires be used (in both Top Fuel Dragster {TFD} and Top Fuel Funny Car {TF/FC}) to try to prevent them from failing, and that a titanium "shield" be attached around the back-half of the roll-cage in Top Fuel Dragsters (although some Funny Car teams adopted this) to prevent any debris from entering the cockpit. This also was the result of the fatal crash at Gateway International Raceway. The rear tire pressure is also heavily regulated by Goodyear Tire and Rubber on behalf of the NHRA, at 7psi, the absolute minimum pressure allowed.

At present, final drive ratios higher than 3.20 (3.2 engine rotations to one rear axle rotation) are prohibited, in an effort to limit top speed potential, thus reducing the perceived level of danger.

References

  1. ^ http://sports.espn.go.com/espn/news/story?id=5759488
  2. ^ "Kenny Bernstein retires from NHRA Drag Racing". NHRA Story. NHRA. http://www.nhra.com/story/story.aspx?F_y=2011&F_m=11&F_d=15&CustomURL=kenny-bernstein-retires-from-nhra-drag-racing&AspxAutoDetectCookieSupport=1. Retrieved 18 November 2011. 
  3. ^ NHRA News: Nitro percentage to be raised to 90 in Top Fuel, Funny Car in 2008 (9/15/2007)
  • "The Top Fuel V8", Race Engine Technology, #009, p60-69
  • "Running The Army Motor", Race Engine Technology, #008, p18-30
  • "Top Fuel by the Numbers", By John Kiewicz, Motor Trend, February 2005
  • "Drag Racing: It's Like Plunging Your Toilet with a Claymore Mine", By John Phillips, Car and Driver, August 2002.

External links